ECRH systems in tokamak SST-1 and Aditya

B. K. Shukla

Institute for Plasma Research Bhat, Gandhinagar (Gujarat), India

IIS-2012, Dec 2-6,

Plan of Talk

•Introduction in short to ECRH in tokamak Plasma

•(Launching of ECRH in SST-1 and Aditya)

•82.6GHz ECRH System on SST-1

•(Gyrotron, transmission line and launcher)

•42GHz ECRH system on SST-1

•(Gyrotron, transmission line and launcher)

•42GHz ECRH System on Aditya

•Future plan

•Summary

IIS-2012, Dec 2-6,

Applications of ECRH

- •ECRH for reliable start-up in tokamak at lower loop voltage and
- even at higher error magnetic field
- •ECRH for plasma heating
- •ECCD and NTM suppression / plasma control
- •Gyrotron's further application on diagnostics CTS
- •Other experiment related to plasma wall interaction in linear devices

•So ECRH a very promising heating scheme in fusion plasma

IIS-2012, Dec 2-6,

Terminology (ECR waves in plasma):

In a homogeneous plasma the two possible modes are given by well known Appleton Hartree dispersion relation, for a wave propagating at an angle θ to the toroidal magnetic field B is :

 $N^{2} = \frac{c^{2} k^{2}}{\omega^{2}} = 1 - \frac{2\alpha\omega^{2} (1 - \alpha)}{2\omega (1 - \alpha) - \omega^{2}_{ce} \operatorname{Sin}\theta \pm \omega_{ce} \Gamma}$

The +ve sign is for O-mode where as -ve sign is for X-mode.

$$\Gamma = \left[\omega_{ce} \sin^4\theta + 4\omega^2 (1 - \alpha)^2 \cos^2\theta \right]^{\frac{1}{2}} \& \alpha = \omega_{pe}^2 / \omega^2$$

Where k is the propagation vector , ω is operating frequency , ω_{ce} is cyclotron frequency , ω_{pe} is plasma frequency (in rad./sec) , N is the refractive index and θ is the angle between propagation vector and magnetic field.

The condition for cyclotron resonance can be expressed as :

$$\omega = \omega_{ce} + k_{||} v_{||}$$

IIS-2012, Dec 2-6,

Type of modes in ECR Plasma

O-Mode: If $\theta = \pi / 2$, O-mode is independent of magnetic field & the dispersion relation is given as :

 $N^{2} = 1 - \frac{\omega_{pe}^{2}}{\omega^{2}}$

For X-mode, dispersion relation is: $\begin{bmatrix} \omega (\omega - \omega_{ce}) - \omega_{pe}^{2} \end{bmatrix} \begin{bmatrix} \omega(\omega + \omega_{ce}) - \omega_{pe}^{2} \end{bmatrix}$ $N^{2} = \frac{(\omega^{2} - \omega_{pe}^{2} - \omega_{ce}^{2})}{\omega^{2} (\omega^{2} - \omega_{pe}^{2} - \omega_{ce}^{2})}$ If, N = 0. Cut Off, N = ∞ Resonance For O- mode, N = 0, at $\omega = \omega_{pe}$ (Density cut off) At, $\omega^{2} = \omega_{pe}^{2} + \omega_{ce}^{2} = \omega_{uh}^{2}$ N = ∞ Resonance (Upper hybrid Resonance) IIS-2012, Dec 2-6,

Theory (CMA Diagram and density cut offs):

Low field side launch of O1 and X2

ECRH systems in Tokamak SST-1 and Aditya

HFS is not feasible in SST-1 and Aditya low field side (LFS) launch of O1 and X2

SST-1 ECRH systems: 82.6GHz ECRH System 42GHz ECRH system

ECRH in Aditya 42GHz ECRH systems

IIS-2012, Dec 2-6,

IPR, Ahmedabad, India

ECRH Schematic in SST-1

- Frequency : 82.6GHz, Maximum Power : 200kW, Maximum Pulse duration : 1000s
- Fundamental O-mode and second harmonic X-mode launch from Low field side (Radial port)
- Transmission line consists of DC break, Corrugated waveguide , bends, polarizer and bellows
- Launcher mirror based launcher used to focus the beam plasma

SST-1 ECRH system Gyrotron:

Microwave Source (Gyrotron):

- Depressed Collector type
- Frequency : 82.6±0.2GHz
- **Power : 200 kW / CW**
- Pulse duration : 1000s
- Duty Cycle : 17%
- Gyrotron output : lateral-horizontal
- Output mode : TEM₀₀ Gaussian beam
- Gyrotron output window : CVD diamond
- Magnet of gyrotron : cryo-cooled

Cooling of gyrotron:

- Collector, body, anode, ion pump and ballast load : cooled with DM water
- CVD Window : CC-15 mixed with DM water

IIS-2012, Dec 2-6,

IPR, Ahmedabad, India

IIS-2012, Dec 2-6,

Prior to high power test of Gyrotron.

- •Electrical layout
- •Mechanical layout
- •Calibration of electrical instrument
- •Calibration of microwave components
- •Commissioning of Cooling system
- •Test of DAC with dummy signal
- •Test with real field signal
- •HV connections to Gyrotron with professional wiring
- •Dedicated HV ground close to Gyrotron

IIS-2012, Dec 2-6,

Electrical layout for Gyrotron

Interlocks

Fast Interlocks

Slow Interlocks

IIS-2012, Dec 2-6,

Most Critical for Gyrotron...

In an event of fault, the fault energy to the Gyrotron should not exceed its critical fault energy known as critical crater energy

Remove high voltage Fast enough i.e. <10µS

Demonstrate 10-Joule Wire test

IIS-2012, Dec 2-6,

Crowbar Protection

10-Joule wire test

Ignitron crowbar system developed at IPR

IIS-2012, Dec 2-6,

HV switch OFF within 10µs

IIS-2012, Dec 2-6,

Integrated test of HVPS and AMPS

The integrated test to turn OFF HVPS (Voltage ~ - 43kV) and AMPS (Voltage ~ + 20kV) together is checked and it is found that both the power supplies switch OFF within 8 microseconds. During this test, 10Joule wire is used and it was safe during the HV shot.

IIS-2012, Dec 2-6,

Gyrotron test set-up with water Dummy load:

HS 2012, Dec 2-0,

II N, Annicuanau, Inula

Gyrotron test results:

(Pulsed operation for burn pattern test)

Electrical parameters for burn-pattern test:

- Beam Voltage : -35kV
 Anode voltage : + 16kV
 Filament Voltage : ~ 30V
- Filament current : 18.5A
- Cryomagnet current : 45.33A
- Pulse duration: 30ms
- A : Paper at the output of MOU
- B : Paper at the output of 400mm waveguide at the output of MOU

IIS-2012, Dec 2-6,

175 kW / 1000s Shot

Scope - /root/jScope/configurations/ecrh_dataf.jscp nter mode Customize Updates Autoscale Network Help 2.0e4 4.0e4 6.0e4 8.0e4 2.0e4 4.0e4 6.0e4 8.0e4	=
2.0e4 4.0e4 5EAM_VOLTACE(kV) 6.0e4 8.0e4 2.0e4 4.0e4 6.0e4 8.0e4 2.0e4 4.0e4 6.0e4 8.0e4	
2.0e4 4.0e4 BEAM_VOLTAGE(KV) 6.0e4 8.0e4 2.0e4 4.0e4 BEAM_CURRENT (A) 6.0e4 8.0e4 2.0e4 4.0e4 BEAM_CURRENT (A) 6.0e4 8.0e4	
2.0e4 4.0e4 BEAM_VOLTAGE(KV) 6.0e4 8.0e4 2.0e4 4.0e4 BEAM_CURRENT (A) 6.0e4 8.0e4 2.0e4 4.0e4 BEAM_CURRENT (A) 6.0e4 8.0e4	
2.0e4 4.0e4 BEAM_VOLTACE(KV) 6.0e4 8.0e4 2.0e4 4.0e4 6.0e4 8.0e4 8.0e4 2.0e4 4.0e4 6.0e4 8.0e4 8.0e4	
2.0e4 4.0e4 BEAM_VOLTAGE(KV) 8.0e4 8.0e4 2.0e4 4.0e4 BEAM_CURRENT (A) 6.0e4 8.0e4 2.0e4 4.0e4 6.0e4 8.0e4	
BEAM_VOLTACE(KV) 6.0e4 8.0e4 2.0e4 4.0e4 6.0e4 8.0e4 2.0e4 4.0e4 6.0e4 8.0e4	
2.0e4 4.0e4 6.0e4 8.0e4 2.0e4 4.0e4 6.0e4 8.0e4 2.0e4 4.0e4 6.0e4 8.0e4	
2.0e4 4.0e4 6.0e4 8.0e4 2.0e4 4.0e4 6.0e4 8.0e4	
BEAM_CURRENT (A) 6.0e4 8.0e4 2.0e4 4.0e4 6.0e4 8.0e4	
EEAM_CURRENT (A) 6.0e4 8.0e4 2.0e4 4.0e4 6.0e4 8.0e4 2.0e4 4.0e4 6.0e4 8.0e4	
BEAM_CURRENT (A) 5.0e4 8.0e4 2.0e4 4.0e4 6.0e4 8.0e4 2.0e4 4.0e4 6.0e4 8.0e4	
BEAM_CURRENT (A) 5.0e4 8.0e4 2.0e4 4.0e4 5.0e4 8.0e4	
2.0e4 4.0e4 6.0e4 8.0e4	
2.0e4 4.0e4 6.0e4 8.0e4	
ANODE_VOLTAGE (KV) 2.0e4 4.0e4 6.0e4 8.0e4	
ANODE_VOLTAGE (kV) 2.0e4 4.0e4 6.0e4 8.0e4	
ANODE_VOLTAGE (KV) 2.0e4 4.0e4 6.0e4 8.0e4	
2.de4 4.de4 6.de4 8.de4	
2.ge4	
Forward Power1 (kW) 2,0e4 4,0e4 6,0e4 8,0e4	
● Zoom ○ Pan ○ Copy Shot 6 Apply Signal:	
1000, 0.000000000]	
2012. Dec 2-6. IPR. Anmedabad.	India

Transmission line system and its high power test:

IIS-2012, Dec 2-6,

Burn Pattern at the exit of transmission line:

Beam Voltage : 35kV Anode Voltage :16kV Pulse duration : 30ms Beam Voltage : 36kV Anode Voltage :16kV Pulse duration : 40ms

IIS-2012, Dec 2-6,

High power test of

CVD diamond window

IIS-2012, Dec 2-6,

Schemes of CVD window test:
On tokamak (×)
Brick load (limitation 3 seconds only)
On dummy load using a QO matching unit (Mirror-box) (√)

IIS-2012, Dec 2-6,

Mirror box inside view

IIS-2012, Dec 2-6,

High power test of CVD Diamond window

High power test of CVD window (Power @ the Gyrotron ~ 80kW for 10 minutes)

Applications Places	System 🔗 🎯 🚭 🖉					1:59 PM
e Pointer mode Cust	omize Undates Autos	- Scope cale Network Help	root/jScope/configurations/ecrh_dat	taf.jscp		
				1		
.0						
.0						
r.O			BEAM_VOLTAGE(KV)			
	10,0e3		3.Ue4	4.0e4	5.Qe4	
<u>م</u>						
U						
)						
)						
	10.0e3	2.Qe4	3.0e4	4.Qe4	5.Óe4	
.0						
0						
0						
.0						
.0						
2	10.0e3	2,0e4	ANODE_VOLTAGE (KV) 3.0e4	4.0e4	5.0e4	6.
0						
0						
<u>م</u>						
0						
0	100.0	26.4	CRYO MAGNET CURRENT (A)		F 6.4	~
			3,Ue4	4.Ue4		b
0,0						
);0						
0						
0	A CONTRACTOR OF THE OWNER		Forward Bower1 (king			
	10.0e3	2.0e4	3.0e4		5.0e4	6
oint 🖲 Zoom 🔾 Pan	ı ○ Copy Shot]3	Apply Signa	E			

CVD window test:

1) UHV test: Vacuum 10-9 range is achieved with baking of ~150 deg. for ~ 24hrs

2) High power microwave test: Maximum power at the window: ~ 60kW / duration
10minutes in 1000s pulse as shot terminated manually without any problem
Looking the risk in operation with two diamond windows with a new approach
of testing, the operation is limited to 60kW power. The test is restricted in power
due to safety of CVD window and Gyrotron.

•The similar CVD diamond window on the Gyrotron is already tested for 200kW/1000s. <u>So window can be accepted at IPR.</u>

Present status 82.6GHz ECRH system is ready

160-180kW @ 82.6GHz Second harmonic breakdown @ 1.5T

IIS-2012, Dec 2-6,

Second harmonic ECRH breakdown in SST-1

Ionization growth rate $\beta = P^{1/2} a^{-1} \omega d_0$: For SST1: P: 160kW, a: 0.2m, ω : 82.6GHz and d_0 : 63.5mm

For SST1: P: 160kW, a: 0.2m, *ω*: 82.6GHz and d₀: 63.5mm For DIIID-1 (P: 250kW, a: 0.65m, *ω*: 110GHz and d₀: 60mm)

 β SST1 / β DIIID-1 ~ 2 For ITER (parameters as mentioned in ref [7]): P: 2400kW, a: 2.0m, ω : 120GHz and d_0 : 60mm

 $\beta^{\text{SST1}} / \beta^{\text{TER}} \sim 1.8$

For T-10: P: 300kW, a: 0.3m, *ω*: 140GHz and d_o: 63.5mm

 $\beta^{\text{SST1}} / \beta^{\text{T-10}} \sim 0.64$

For KSTAR: P: 450kW, a: 0.5m, ω : 84GHz and d_0 : 63.5mm

β^{SST1} / β^{KSTAR} ~ **1.46**

The study is being done, it is not yet concluded but 160kW power @ Second harmonic could be at threshold.....

42GHz ECRH system for SST-1 is proposed & now its in advance stage for commissioning on SST-1

IIS-2012, Dec 2-6,

42GHz / 500kW ECRH system for SST-1 and Aditya

For SST-1

Pre-ionization, start-up and heating at fundamental harmonic (1.5T

operation)

In Aditya

Breakdown studies at second harmonic (0.75T)

IIS-2012, Dec 2-6,

ECRH systems at its application

42GHz ECRH system for SST-1 and Aditya

Gyrotron:						
Frequency : 42GHz						
Power : 500kW						
Pulse duration :	500ms					
Gyrotron with int	ternal mode					
converter						
Gyrotron output :	HE11					
(Gaussian output)						
Depressed colle	ctor type					
Gyrotron,						
Efficiency ~ better than 45%						
Gyrotron with external MOU						
Calorimetric dummy load						

Layout of 42GHz ECRH system in SST-1

IIS-2012, Dec 2-6,

Transmission line system for 42GHz / 500kW ECRH system for SST-1 and Aditya

Two switches, One polarizer, ordinary bends, bends with directional coupler, DC breaks, bellows and 75m corrugated waveguide

IIS-2012, Dec 2-6,

42GHz / 500kW ECRH system for SST-1 and Aditya

The entire system has been tested at M/s. Gycon in Russia for IIS-2012, Bec 2-0, -500ms the efficiency is more than 50% Anmedabad, India

High power test of 42GHz Gyrotron Power : 500kW, duration : 500ms

High power test of 42GHz Gyrotron Power : 500kW, duration : 500ms

Power versus cathode voltage

IIS-2012, Dec 2-6,

Frequency measurement of Gyrotron

IIS-2012, Dec 2-6,

Transmission line test

IIS-2012, Dec 2-6,

Transmission line test

High power test of windows

42GHz ECRH system on SST-1

Tested at factory for its performance

Planned for commissioning of system on SST-1 &

Aditya soon

ECRH is allotted for single port

Launcher is designed such that to accommodate both the systems

82.6GHz and 42GHz system would be connected to same port

One focusing mirror and one plane mirror combination is used for both the systems

IIS-2012, Dec 2-6,

IIS-2012, Dec 2-6,

42GHz launcher:

Mirror Size: 170mm x 240mm

Mirror focal length: 353mm

Beam size (1/e radius) at Plasma center: 35mm

82.6 GHz launcher:

Mirror Size: 140mm x 200mm

Mirror focal length: 481mm

Beam size at Plasma center: 20mm

IIS-2012, Dec 2-6,

Low power test of launcher

IIS-2012, Dec 2-6,

Advance launcher with further optimized mirrors and feasibility to steer the beam is under design

Future Plan for ECRH

Upgrade the ECRH system with power and frequency

Advance launcher capable to steer the beam in plasma

Summary

•In SST-1 and Aditya ECRH would be launched from Low field side

•In SST-1 82.6 and 42GHz ECRH system would be launched to carry out ECRH experiments at fundamental and at second harmonic

•The 82.6GHz Gyrotron has been tested for pulsed condition using RHVPS.

•In Aditya 42GHz ECRH system would be used for second harmonic ECRH experiments at 0.75T operation

•The 82.6GHz ECRH system is ready for SST-1 tokamak

•The 42GHz ECRH system has been tested at factory and scheduled to commission on tokamak SST-1 and Aditya soon.

IIS-2012, Dec 2-6,

Thank You

IIS-2012, Dec 2-6,